Theor Chim Acta (1986) 70: 253-256

Approximate calculation of the matrix elements of Coulomb and exchange operators for the "core" electrons of the atoms Rb through Cd

Raffaele Montagnani and Oriano Salvetti

Istituto di Chimica Quantistica ed Energetica Molecolare del C.N.R., Via Risorgimento 35, I-56100 Pisa, Italy

(Received May 15/Accepted May 16, 1986)

Following a previously described method which approximates the Coulomb and exchange integrals in valence-electron-only SCF calculations, the necessary parameters for the atoms from Rb to Cd are reported. Extension to other atoms is in progress.

Key words: Pseudopotential - Valence-electron-only SCF

We have recently proposed [1-4] an approximate method for calculating the matrix elements of the Coulomb and exchange operators generated by the core electrons. By means of this method and using a Phillips-Kleinman [5] pseudopotential, one can perform molecular SCF calculations on the valence electrons only, with a substantial reduction of computational effort.

This is only to report that the necessary parameters for our method have been evaluated also for atoms Rb through Cd; in [1-3] the same parameters for lighter atoms Li though Kr can be found.

The Coulomb operator generated by the core electrons of an atom centered on \bar{R}_c is approximated by the formula

$$J_{c}(|\bar{r}-\bar{R}_{c}|) = \sum_{s}^{M_{r}} c_{s} \frac{\operatorname{erf}(a_{s}|\bar{r}-\bar{R}_{c}|)}{|\bar{r}-\bar{R}_{c}|} + \sum_{s}^{M_{x}} d_{s} \exp\left[-b_{s}(r-R_{c})^{2}\right]$$
(1)

where M_r is the number of core shells and $M_x = M_r - 1$.

The exchange integrals between the core of an atom and two generic functions Φ_1 and Φ_2 are computed by the formula

$$\langle \Phi_1 | K_c | \Phi_2 \rangle = \sum_{i,j}^{N} \sum_{l}^{M} H_{ij}^l \sum_{m=-l}^{l} f_{lm}(r_i^l) g_{lm}(r_j^l)$$
(2)

where

$$\Phi_1(r-R_1) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{lm}(r) r^l Y_{lm}(\Omega)$$

$$\Phi_2(r-R_2) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} g_{lm}(r) r^l Y_{lm}(\Omega)$$

l and *m* are the azimuthal and magnetic quantum numbers and $f_{lm}(r)$ is the average value of the function *f* on a spherical surface of radius *r*, i.e.:

$$f_{lm}(\Omega_p) = \sum_{p=1}^{n_p} C_{lmp} f(r, \Omega_p)$$

and

$$C_{lmp} = \frac{S_{lm}(\Omega_p)}{\sum\limits_{p=1}^{n_p} S_{lm}(\Omega_p)^2}$$

where $S_{lm}(\Omega_p)$ is the value at Ω_p of the spherical harmonic in real form S_{lm} . The nonlocal character of the exchange operator is kept. The right contributions $f_{lm}(r_i^l)$ at least up to l quantum number are obtained by computing the f function for n_p points on a sphere having r_i^l radius, and adding them after multiplication by the appropriate C_{lmp} coefficients.

Throughout the present calculations we have adopted the Huzinaga's [6] 17s, 11p, 6d (Rb, Sr) and 17s, 11p, 8d (Y-Cd) basis sets as reference for SCF atomic orbitals. We freeze K, L, M and partially N shells: 5s and 4d are the valence orbitals.

We report c_s , a_s , d_s and b_s parameters for Coulomb operator approximation in Tables 1 and 2, while r_i^l points and H_{ij}^l weights necessary for the exchange

	Rb	Sr	Y	Zr	Nb	Мо
a ₁	32.3429	33.2272	34.1116	34.9962	35.8809	36.7656
a_2	7.2008	7.4174	7.6343	7.8512	8.0682	8.2853
a_3	2.2249	2.3240	2.4230	2.5215	2.6198	2.7177
a_4	0.6946	0.7614	0.8170	0.8686	0.9114	0.9588
b_1	125.0176	121.8144	117.8240	113.3136	108.7456	104.3888
d_1	-4.3368	-4.2008	-4.0520	-3.8968	-3.7448	-3.6008
b_2	6.2992	7.3888	8.5264	9.6800	10.8624	12.0496
d_2	-1.1960	-1.2520	-1.3064	-1.3608	-1.4168	-1.4712
b_3	0.9216	1.0224	1.1040	1.1824	1.2432	1.3232
d_3	-0.4960	-0.5552	-0.6000	-0.6400	-0.6672	-0.7024

Table 1. Parameters to fit Coulomb potentials $2J_c$ by (1) for atoms from Rb to Mo^a

 $c_1 = 2$, $c_2 = c_4 = 8$ and $c_3 = 18$ for all atoms

	Тс	Ru	Rh	Pd	Ag	Cd
<i>a</i> ₁	37.6503	38.5351	39.4200	40.3049	41.1899	42.0749
a_2	8.5025	8.7199	8.9372	9.1547	9.3722	9.5898
a_3	2.8153	2.9124	3.0093	3.1059	3.2022	3.2992
a_4	1.0128	1.0595	1.1054	1.1505	1.1951	1.2392
b1	100.5856	97.3776	94.7760	92.6512	91.0848	89.8608
d_1	-3.4712	-3.3560	-3.2552	-3.1656	-3.0888	-3.0200
$\dot{b_2}$	13.2640	14.5024	15.7696	17.1008	18.4352	19.9008
d_2	-1.5272	-1.5832	-1.6392	-1.6984	-1.7560	-1.8136
b_3	1.4240	1.5120	1.6032	1.6944	1.7904	1.8944
d_3	-0.7456	-0.7824	-0.8176	-0.8528	-0.8880	-0.9232

Table 2. Parameters to fit Coulomb potentials $2J_c$ by (1) for atoms from Tc to Cd^a

^a $c_1 = 2$, $c_2 = c_4 = 8$ and $c_3 = 18$ for all atoms

Table 3. Parameters to fit exchange integrals by (2) for atoms Rb-Mo

	Rb	Sr	Y	Zr	Nb	Мо
K Shell						
<i>r</i> ₁	0.707341D-01	0.687666D-01	0.669080D-01	0.651495D-01	0.634789D-01	0.618918D-01
H_{11}^{0}	0.400265 D - 02	0.378307 D - 02	0.358134D-02	0.339556D - 02	0.322366D - 02	0.306447D-02
r ₁	0.103492D+00	0.100650D+00	0.979569D-01	0.954042D-01	0.929837D-01	0.906806D-01
H_{11}^{1}	0.121008D - 04	0.109002D-04	0.984410D-05	0.891202D-05	0.808896D-05	0.735725D-05
r_1	0.135911D+00	0.132291D+00	0.128980D+00	0.126078D+00	0.123290D+00	0.120624D+00
H_{11}^2	0.307401 D - 07	0.261439D-07	0.224594D-07	0.195890D-07	0.171295D-07	0.150235D-07
L She	-11					
<i>r</i> ₁	0.177838D + 00	0.172468D + 00	0.167493D+00	0.162806D + 00	0.158371D+00	0.154160D+00
H_{11}^{0}	0.464712D-01	0.437073D-01	0.412220D-01	0.389471D-01	0.368540 D - 01	0.349204D-01
<i>r</i> ₁	0.261293D+00	0.252614D+00	0.244521D+00	0.236946D+00	0.229815D + 00	0.223117D+00
H_{11}^{1}	0.224317D-02	0.195966D-02	0.172034D - 02	0.151688D-02	0.134235D-02	0.119256D-02
r_1	0.327654D+00	0.320831D+00	0.314286D+00	0.308002D + 00	0.301966D+00	0.296161D+00
H_{11}^2	0.228860 D - 03	0.202304 D - 03	0.210062D - 03	0.191951D-03	0.175327D-03	0.161066D-03
M Sh	lell					
r_1	0.522878D+00	0.503427 D + 00	0.485986D + 00	0.469908D+00	0.454946D+00	0.440718D+00
H_{11}^{0}	0.539152D+00	0.499786D+00	0.465755D+00	0.435448D+00	0.408159D+00	0.383030D+00
<i>r</i> ₁	0.457269D + 00	0.442579D+00	0.428407D + 00	0.414863 D + 00	0.402086D+00.	0.389882D+00
H_{11}^{1}	0.379557D-01	0.333081D-01	0.292425D-01	0.257163D-01	0.226916D-01	0.200595D-01
<i>r</i> ₁	0.111665D+01	0.104552D+01	0.982952D + 00	0.925087D + 00	0.875477D+00	0.830091D+00
H_{11}^{2}	0.425126D + 02	0.272347D + 02	0.247913D + 00	0.172268D+00	0.123759D+00	0.899207D-01
N Sh	ell (s and p only)					
<i>r</i> ₁	0.776247D+00	0.739328D+00	0.709133D+00	0.682143D+00	0.660032D+00	0.637183D+00
<i>r</i> ₂	0.168002 D + 01	0.160012D+01	0.153477D+01	0.147635D+01	0.142850D+01	0.137905D+01
H_{11}^{0}	0.818962D + 00	0.742914D + 00	0.683469D+00	0.632433D+00	0.592097D+00	0.551813D+00
H_{12}^{0}	0.373945D+00	0.339220D + 00	0.312078D+00	0.288774D+00	0.270356D+00	0.251962D+00
H_{22}^{0}	0.378398D + 00	0.343260D + 00	0.315794D+00	0.292213D + 00	0.273576D + 00	0.254963D+00
r_1	0.115117D+01	0.106854D + 01	0.100557 D + 01	0.953420D+00	0.911659D+00	0.871758D+00
<i>r</i> ₂	0.235569D+01	0.218661D+01	0.205774D+01	0.195103D+01	0.186557D+01	0.178392D+01
H_{11}^{1}	0.196551D+01	0.145912D+01	0.114439D+01	0.924823D+00	0.773129D+00	0.646407D+00
H_{12}^{1}	0.953382D+00	0.707757 D + 00	0.555092D + 00	0.448591D+00	0.375011D+00	0.313544D+00
H_{22}^{1}	0.960495D+00	0.713037 D + 00	0.559234D+00	0.451938D+00	0.377809D + 00	0.315883D+00
<i>r</i> ₁	0.137161D+01	0.129758D + 01	0.123114D+01	0.117116D+01	0.111676D+01	0.106719D+01
<i>r</i> ₂	0.254612D+01	0.240869D + 01	0.228535D + 01	0.217402D + 01	0.207303D + 01	0.198101D+01
H_{11}^2	0.748436D + 01	0.588164D + 01	0.166932D+01	0.117060D+01	0.872721D+00	0.642555D + 00
H_{12}^{2}	0.252206D+01	0.198198D + 01	0.562524D+00	0.394465D+00	0.294088D + 00	0.216527D+00
H_{22}^{2}	0.403188D+01	0.316849D+01	0.899276D + 00	0.630610D+00	0.470142D+00	0.346150D+00

	Тс	Ru	Rh	Pd	Ag	Cd
K Shell						
r_1	0.603812D-01	0.589433D-01	0.575715D-01	0.562621D-01	0.550108D-01	0.538138D-01
H_{11}^{0}	0.291671D-02	0.277945D-02	0.265158D-02	0.253234D-02	0.242095D-02	0.231674D - 02
r ₁	0.884889D-01	0.864006D-01	0.844106D-01	0.825083D-01	0.806898D-01	0.789515D-01
H_{11}^{1}	0.670793D-05	0.612954D-05	0.561297D-05	0.514894D-05	0.473158D-05	0.435601D-05
<i>r</i> ₁	0.118038D+00	0.115601D+00	0.113218D+00	0.110902D + 00	0.108674D + 00	0.106546D+00
H_{11}^2	0.131921D-07	0.116401D-07	0.102726D-07	0.907430D-08	0.803395D-08	0.713509D-08
L Shell	I					
r ₁	0.150167D+00	0.146377D+00	0.142776D+00	0.139348D+00	0.136070D+00	0.132953D+00
H_{11}^{0}	0.331349D-01	0.314836D-01	0.299535D-01	0.285324D-01	0.272058D-01	0.259738D-01
<i>r</i> ₁	0.216793D+00	0.210825D+00	0.205164D+00	0.199800D+00	0.194708D+00	0.189869D+00
H_{11}^1	0.106300D-02	0.950698D-03	0.852627D-03	0.766891D-03	0.691655D-03	0.625415D-03
<i>r</i> ₁	0.290559D+00	0.285181D+00	0.279998D+00	0.275000D+00	0.270177D+00	0.265521D+00
H_{11}^2	0.148606D-03	0.137372D-03	0.127288D-03	0.118050 D - 03	0.110066D-03	0.103006D-03
M She	11					
<i>r</i> ₁	0.427263D+00	0.414663D+00	0.402901D + 00	0.391764D+00	0.381258D+00	0.371254D+00
H_{11}^0	0.359999D+00	0.339079D+00	0.320115D+00	0.302664D+00	0.286647D+00	0.271803D+00
<i>r</i> ₁	0.378223D+00	0.367270D+00	0.356913D+00	0.347091D+00	0.337791D+00	0.329033D+00
H_{11}^1	0.177656D-01	0.157954D-01	0.140877D-01	0.125998D-01	0.113027D-01	0.101753D-01
<i>r</i> ₁	0.788898D + 00	0.754007D + 00	0.722152D+00	0.692969D+00	0.665420D + 00	0.638438D+00
H_{11}^2	0.662570D-01	0.505079 D - 01	0.389833D-01	0.304360 D - 01	0.238606D - 01	0.186131D-01
N She	ll (s and p only)					
r ₁	0.613789D+00	0.594521D+00	0.576186D+00	0.559083D+00	0.542997D+00	0.527786D+00
<i>r</i> ₂	0.132842D+01	0.128671D+01	0.124703D+01	0.121002D+01	0.117520D+01	0.114228D+01
H_{11}^{0}	0.512038D+00	0.480394D + 00	0.451220D + 00	0.424831D+00	0.400736D+00	0.378599D + 00
H_{12}^{0}	0.233800D+00	0.219352D + 00	0.206031D+00	0.193981D+00	0.182979D+00	0.172871D+00
H_{22}^{0}	0.236585D + 00	0.221964D+00	0.208484D+00	0.196291D+00	0.185158D + 00	0.174930D+00
r ₁	0.832962D + 00	0.799986D + 00	0.770107D+00	0.742682D+00	0.717517D+00	0.694270D+00
<i>r</i> ₂	0.170453D+01	0.163705D + 01	0.157591D+01	0.151979D+01	0.146829D+01	0.142072D+01
H_{11}^1	0.538794D+00	0.458407D + 00	0.393663D+00	0.340513D+00	0.296654D+00	0.260038D+00
H_{12}^{1}	0.261345D + 00	0.222353D + 00	0.190949D+00	0.165168D+00	0.143894D+00	0.126133D+00
H_{22}^{1}	0.263295D + 00	0.224012D + 00	0.192374D+00	0.166400D+00	0.144967D+00	0.127074D+00
r 1	0.102202D+01	0.980341D+00	0.941932D+00	0.906418D+00	0.873486D+00	0.842863D+00
r ₂	0.189716D+01	0.181980D+01	0.174850D + 01	0.168258D+01	0.162145D+01	0.156460D + 01
H_{11}^2	0.468855D + 00	0.360284D + 00	0.279648D + 00	0.219515D + 00	0.174147D+00	0.139355D+00
H_{12}^2	0.157994D + 00	0.121408D + 00	0.942352D - 01	0.739715D - 01	0.586836 D - 01	0.469595 D - 01
H_{22}^{2}	0.252576D + 00	0.194088D+00	0.150649D + 00	0.118254D+00	0.938143 D - 01	0.750716D - 01

Table 4. Parameters to fit exchange integrals by (2) for atoms Tc-Cd

integrals approximation are in Tables 3 and 4. The quality of the approximation has been tested and is the same as previously reported for other atoms.

References

- 1. Montagnani R, Salvetti O (1984) Theor Chim Acta 64:371
- 2. Montagnani R, Salvetti O (1984) Theor Chim Acta 65:159
- 3. Montagnani R, Salvetti O (1986) Theor Chim Acta 70:11-15
- 4. Salvetti M, Montagnani R, Riani P, Salvetti O (1985) J Comput Phys 60:467
- 5. Phillips JC, Kleinman L (1959) Phys Rev 116:287
- 6. Huzinaga S (1977) J Chem Phys 66:4245